Une inégalité polynômiale en plusieurs variables

PIERRE GOETGHELUCK

Département de mathématiques, Université de Paris-sud, Centre d'Orsay, Bâtiment 425, 91405 Orsay Cedex, France

Communicated by Oved Shisha

Received June 1, 1979; revised May 23, 1983

Soit Ω un ouvert borné de \mathbb{R}^N et m une fonction de $C^s(\overline{\Omega})$. Sous des conditions assez générales sur m et Ω on montre qu'il existe deux constantes C et d telles que pour tout polynôme P de N variables réelles on ait:

$$||P||_{L^{\infty}(\Omega)} \leq C \text{ (degré de } P)^d ||Pm||_{L^{\infty}(\Omega)}.$$

De plus on donne la valeur optimale exacte de la constante d en précisant sa signification géométrique.

1. Introduction

Notations

Soit $N\geqslant 2$, $\alpha=(\alpha_1,...,\alpha_N)\in\mathbb{N}^N$ et $x=(x_1,...,x_N)\in\mathbb{R}^N$. On pose $|\alpha|=\alpha_1+\alpha_2+\cdots+\alpha_N$, $\alpha!=\alpha_1!$ $\alpha_2!\cdots\alpha_N!$, $x^\alpha=x_1^{\alpha_1}\cdots x_N^{\alpha_N}$, $D_i=\partial/\partial x_i$ (i=1,...,N), $D^\alpha=D_1^{\alpha_1}\cdots D_N^{\alpha_N}$. Nous noterons également $x=(x',x_N)$ avec $x'=(x_1,...,x_{N-1})\in\mathbb{R}^{N-1}$. Si $\mathscr O$ est un ouvert de $\mathbb R^N$ et f une fonction continue sur $\mathscr O$ on pose $\|f\|_{\mathscr O}=\sup_{x\in\mathscr O}|f(x)|$.

 \mathscr{T}_n désigne l'espace des polynômes de N variables réelles à coefficients réels, de degré au plus n.

Enoncé du résultat

Soient Ω un ouvert borné de \mathbb{R}^n , $\partial \Omega$ la frontière de Ω et m une fonction réelle de classe C^s définie sur un voisinage de $\overline{\Omega}$. Soit $\Gamma = \{x \mid m(x) = 0\}$.

Nous faisons les hypothèses suivantes:

(i) Si $a \in \Gamma \cap \partial \Omega$, il existe une fonction h réelle de classe C^2 définie sur un voisinage V de a telle que:

- (a) grad $h(x) \neq 0$ pour $x \in \partial \Omega \cap V$,
- (b) les points de $V \cap \partial \Omega$ sont définis par h(x) = 0,
- (c) les points de $V \cap \Omega$ sont définis par h(x) > 0.
- (ii) Pour tout point $a \in \Omega$ on suppose qu'il existe $\alpha \in \mathbb{N}^N$ tel que $|\alpha| \le s$, $D^{\alpha}m(a) \ne 0$ et l'on pose

$$d(a, m) = \inf\{|\alpha| \mid D^{\alpha}m(a) \neq 0\}.$$

Pour tout point $a \in \Gamma \cap \partial \Omega$ nous prendrons des coordonnées locales $x_1,...,x_N$ telles que a soit l'origine et que l'hyperplan tangent en a à $\partial \Omega$ soit défini par $x_N = 0$ et l'on suppose qu'il existe α tel que $|\alpha| + \alpha_N \leq s$, $D^{\alpha}m(a) \neq 0$. On posera $d(a,m) = \inf\{|\alpha| + \alpha_N \mid D^{\alpha}m(a) \neq 0 \text{ (dans les coordonnées locales)}\}.$

Définition de la constante
$$d: d = d(\Omega, m) = \sup_{a \in \Omega \cup (\Gamma \cap \partial \Omega)} d(a, m)$$
.

En résumé ces hypothèses signifient que le bord de Ω est assez régulier au voisinage des points où Γ rencontre $\partial\Omega$ et que la fonction m n'est plate en aucun point de $\overline{\Omega}$.

Donnons quelques exemples. Soit $\Omega = \{(x, y) \in \mathbb{R}^2 \mid x^2 + y^2 < 1\}$ et $m(x, y) = y - x^2$. Alors, d = 1. Soit $\Omega = \{(x, y) \in \mathbb{R}^2 \mid |x| < 2, \ 0 < y < 1\}$. Pour $m(x, y) = y - x^2$ on a d = 2, pour $m(x, y) = y^3 - x^2$ on a d = 2 et pour $m(x, y) = x^3 - y^2$ on a d = 3.

Le but de cet article est de démontrer le résultat suivant:

Théorème. Avec les notations précédentes, sous les hypothèses (i) et (ii), il existe une constante C telle que pour tout $n \ge 1$ et pour tout $P \in \mathscr{S}_n$ on ait:

$$||P||_{\Omega} \leqslant Cn^d \, ||Pm||_{\Omega}. \tag{1}$$

De plus la constante d est optimale.

Des résultats analogues ont été démontrés pour les fonctions d'une variable dans [2,3]. Ce théorème améliore très sérieusement et par des méthodes différentes les résultats de [1]. En particulier on précise pour la première fois la signification géométrique de la constante d.

Principe de la démonstration de l'inégalité (1)

Pour chaque point de $\overline{\Omega}$ nous déterminerons un voisinage ouvert \mathcal{O} pour lequel il existe $C_{\mathcal{O}}$ tel que pour tout $n \ge 1$ et pour tout $P \in \mathcal{S}_n$ on ait

$$||P||_{\mathscr{O} \cap \Omega} \leqslant C_{\mathscr{O}} n^d ||Pm||_{\Omega}. \tag{2}$$

L'ensemble $\overline{\Omega}$ étant compact peut être recouvert par un nombre fini de tels

ouverts $\mathcal{O}_1,...,\mathcal{O}_r$. On aura donc l'inégalité (1) avec $C = \operatorname{Max}(C_{\mathcal{O}_1},...,C_{\mathcal{O}_r})$. Nous serons amenés à considérer trois sortes de points: les points de $\overline{\Omega} \setminus \Gamma$, ceux de $\Gamma \cap \Omega$ et ceux de $\Gamma \cap \partial \Omega$. Pour les points de $\overline{\Omega} \setminus \Gamma$ le problème est simple: si $x_0 \in \overline{\Omega} \setminus \Gamma$, $m(x_0) \neq 0$, il existe donc, puisque m est continue, un voisinage ouvert \mathcal{O} de x_0 dans lequel on a $|m(x)| > \frac{1}{2} |m(x_0)|$, on a alors immédiatement l'inégalité (2) avec $C_{\mathcal{O}} = 2 |m(x_0)|^{-1}$.

Nous étudierons au paragraphe 3 le cas points de $\Gamma \cap \Omega$ et au paragraphe 4 celui des points de $\Gamma \cap \partial \Omega$. Mais auparavant il nous faut établir quelques lemmes pour les fonctions d'une variable.

2. RÉSULTATS PRÉLIMINAIRES

Pour un intervalle L de \mathbb{R} et une fonction g mesurable réelle sur L on note $\|g\|_L = \sup_{x \in L} |g(x)|$.

Dans toute cette partie I = [a, b] et J = [c, d] sont deux intervalles tels que a < c < d < b. L'espace des polynômes d'une variable réelle à coefficients réels et de degré au plus n est noté H_n .

LEMME 1 (Inégalités de Bernstein et de Markov). Pour tout $n \in \mathbb{N}$ et pour tout $P \in H_n$ on a:

$$||P'||_J \le n[\inf\{c-a, b-d\}]^{-1} ||P||_I,$$

 $||P'||_I \le n^2 2(b-a)^{-1} ||P||_I.$

Pour la démonstration de ces inégalités voir [5, pp. 133, 134, et 141].

LEMME 2. Pour tout $x_0 \in \mathbb{R}$, pour tout $n \ge 1$ et pour tout $P \in H_{n-1}$ on a:

$$||P||_{J} \le n2 [\inf\{c-a, b-d\}]^{-1} ||(x-x_0)P||_{I},$$

 $||P||_{I} \le n^2 2(b-a)^{-1} ||(x-x_0)P||_{I}.$

Démonstration. Posons $R(x) = (x - x_0) P(x)$. Alors $R(x) = (x - x_0) R'(y)$ où y est compris entre x et x_0 , donc P(x) = R'(y).

Pour $x \in J$, si $x_0 \in [\frac{1}{2}(c+a), \frac{1}{2}(b+d)]$, y appartient à ce même intervalle donc $|R'(y)| \le n2[\inf\{c-a, b-d\}]^{-1} \|R\|_I$ (d'après le lemme 1) et si $x_0 \notin [\frac{1}{2}(c+a), \frac{1}{2}(b+d)]$, on aura $|x-x_0| > \inf\{\frac{1}{2}(c-a), \frac{1}{2}(b-d)\}$ ce qui démontre la première inégalité.

Démontrons la seconde inégalité. Deux cas sont possibles: si $x_0 \in I$, $y \in I$, et $|P(x)| = |R'(y)| \le n^2 2(b-a)^{-1} \|R\|_I$ (d'après le lemme 1). Si $x_0 \notin I$ supposons par exemple $x_0 > b$, alors $\|(x-x_0)P(x)\|_I \ge \|(x-b)P(x)\|_I$ et nous sommes ramenés au cas précédent. Raisonnement analogue pour $x_0 < a$.

LEMME 3. Soient $x_1,...,x_r$ des éléments de I. Pour tout n > r et pour tout $P \in H_{n-r}$ on a

$$||P||_{J} \leq (2r)^{r} \left[\inf\{c-a,b-d\}\right]^{-r} n^{r} ||(x-x_{1})\cdots(x-x_{r}) P(x)||_{I},$$

$$||P||_{I} \leq 2^{r} (b-a)^{-r} n^{2r} ||(x-x_{1})\cdots(x-x_{r}) P(x)||_{I}.$$

Démonstration. On décompose chacun des segments [a,c] et [b,d] en r parties égales par les points $a=l_0 < l_1 < \cdots < l_r = c, \ b=m_0 > m_1 > \cdots > m_r = d$, et on pose $\Delta_i = [l_i, m_i]$ (i=0,...,r); en particulier $\Delta_0 = I, \ \Delta_r = J$. On a d'après le lemme 2:

$$||P||_{J} = ||P||_{\Delta_{r}} \le 2nr [\inf\{c - a, b - d\}]^{-1} ||(x - x_{1}) P(x)||_{\Delta_{r-1}}$$

$$\le \dots \le (2r)^{r} [\inf\{c - a, b - d\}]^{-r} n^{r} ||(x - x_{1}) \dots (x - x_{r}) P(x)||_{\Delta_{0}(=I)}$$

de même:

$$||P||_{I} \leq 2(b-a)^{-1} n^{2} ||(x-x_{1}) P(x)||_{I}$$

$$\leq \cdots \leq 2^{r}(b-a)^{-r} n^{2r} ||(x-x_{1}) \cdots (x-x_{r}) P(x)||_{I}.$$

LEMME 4. Soit h une fonction définie sur I par $h(x) = (x - x_1) \cdots (x - x_r) u(x)$ où pour tout $i, x_i \in I$ (les x_i ne sont pas nécessairement tous distincts) et où u est continue dans un voisinage de I. On suppose que h est de classe C^r dans ce voisinage et que pour tout $x \in I$, $|h^{(r)}(x)| > \mu > 0$. On a alors, pour tout $x \in I$, $|u(x)| > \mu/r!$.

Démonstration. Posons $P(x) = (x - x_1) \cdots (x - x_r)$ donc h = Pu. Avec les notations habituelles pour les différences divisées on a [4, p. 7]:

$$[x_1 \cdots x_{r+1}]h = \sum_{i=1}^{r+1} Pu(x_i) / \prod_{i \neq j} (x_i - x_j).$$

Posant $x_{r+1} = x$, compte tenu du fait que $P(x_i) = 0$ (i = 1,...,r) il reste $[x_1 \cdots x_r x]h = u(x)$. Par ailleurs on sait [4, p. 6] que pour tout $x \in I$ il existe $\xi \in I$ tel que $[x_1 \cdots x_r x]h = h^{(r)}(\xi)/r!$ ce qui achève la démonstration du lemme.

LEMME 5. Soit m une fonction de classe C^r sur un voisinage de I vérifiant pour tout $x \in I \mid m^{(r)}(x) \mid > \mu > 0$. Alors il existe $x_1, x_2, ..., x_r$ dans I tels que pour tout $x \in I$ on ait $|m(x)| \geqslant \mu(r!)^{-1} |(x-x_1) \cdots (x-x_r)|$ avec inégalité stricte sauf éventuellement aux points $x_1, ..., x_r$.

Démonstration. Le problème de la meilleure approximation de m par un élément de $\mathscr{T}_{r-1} \cap W$ où $W = \{g \in C(I) \mid \operatorname{sgn}(g(x)) = \operatorname{sgn}(m(x)) \text{ et } |g(x)| \le 2 |m(x)| (x \in I)\}$ possède toujours une ou plusieurs solutions. De plus si P est

une solution quelconque on sait qu'elle coincide avec m en au moins r points que nous noterons $x_1,...,x_r$ non nécessairement distinct (on compte leur multiplicité). Alors, d'après [4, p. 3] on a avec les mêmes notations que dans le lemme 4

$$m(x) = [x_1]m + \dots + ([x_1 \dots x_r]m)(x - x_1) \dots (x - x_{r-1})$$

$$+ ([x_1 \dots x_r x]m)(x - x_1) \dots (x - x_r)$$

$$= P(x) + ([x_1 \dots x_r x]m)(x - x_1) \dots (x - x_r).$$

Mais d'une part $|m(x) - P(x)| \le |m(x)|$ et d'autre part il existe $\xi \in I$ tel que $[x_1 \cdots x_r x] m = m^{(r)}(\xi)/r!$. Le lemme en résulte immédiatement.

PROPOSITION 1. Soit m une fonction réelle de classe C^r sur un voisinage de I telle que pour tout $x \in I$, $|m^{(r)}(x)| > \mu > 0$. Alors pour tout n > r et pour tout polynôme $P \in H_{n-r}$ on a:

$$||P||_J \leq (2r)^r \left[\inf\{c-a, b-d\}\right]^{-r} r! \mu^{-1} n^r ||Pm||_I,$$

 $||P||_I \leq 2^r (b-a)^{-r} r! \mu^{-1} n^{2r} ||Pm||_I.$

Démonstration. D'après le lemme 5 il existe $x_1, x_2,..., x_r$ dans I tels que l'on ait $|m(x)| > \mu(r!)^{-1} |(x-x_1)\cdots(x-x_r)|$. La proposition résulte donc immédiatement du lemme 3.

3. Construction du voisinage \mathcal{O} pour un point de $\Gamma \cap \Omega$

Nous allons d'abord établir le résultat suivant.

PROPOSITION 2. Soit ω un ouvert de \mathbb{R}^N contenant l'origine et soit $m \in C^r(\omega)$. Supposons que pour tout β vérifiant $|\beta| < r$ on ait $D^\beta m(0) = 0$ et que pour un α tel que $|\alpha| = r$ on ait $D^\alpha m(0) \neq 0$. Alors il existe une rotation δ de \mathbb{R}^N telle qu'en notant $y = \delta(x)$ la nouvelle variable on ait $D^r_1(m \circ \delta^{-1})(0) \neq 0$.

Démonstration. Utilisant les hypothèses et la formule de Taylor on obtient $m(x) = \sum_{|\beta|=r} (\beta!)^{-1} (D^{\beta} m(0)) x^{\beta} + o(|x|^r)$ ou encore $m(x) = P(x) + o(|x|^r)$. Si l'on avait $|m(x)| = o(|x|^r)$ au voisinage de 0, on aurait $P(x) = o(|x|^r)$ et par suite $D^{\alpha}P(x) = 0$ donc $D^{\alpha}m(0) = 0$ contrairement à l'hypothèse. Il existe donc une suite de réels (ε_i) tendant vers 0, une suite (d_i) vérifiant pour tout $i \in N$, $d_i \in \mathbb{R}^N$ et $|d_i| = 1$ et une constante c > 0 telles que

 $m(\varepsilon_i d_i)/\varepsilon_i^r > c$. La boule unité de \mathbb{R}^N étant compacte il existe une sous-suite encore notée (d_i) qui converge vers une limite d(|d| = 1). On a alors

$$m(\varepsilon_i d_i) = \sum_{|\beta| = r} (\beta!)^{-1} D^{\beta} m(0) \varepsilon_i^r d_i^{\beta} + o(\varepsilon_i^r)$$

$$= \sum_{|\beta| = r} (\beta!)^{-1} D^{\beta} m(0) \varepsilon_i^r d^{\beta} + o(\varepsilon_i^r)$$

$$= m(\varepsilon_i d) + o(\varepsilon_i^r)$$

ce qui montre l'existence d'une constante c'>0 telle que $m(\varepsilon_i d)/\varepsilon_i^r>c'$ pour tout i.

Soit alors δ une rotation de \mathbb{R}^N telle que $y = \delta(x)$ et que d soit la direction de l'axe des y_1 .

Posons $g(y_1) = (m \circ \delta^{-1})$ $(y_1, 0,..., 0)$. Il est alors clair que g vérifie $g^{(i)}(0) = 0$ pour i < r et que (formule de Taylor) $g^{(r)}(0) \neq 0$, ce qui démontre la proposition.

Nous sommes maintenant en mesure de déterminer le voisinage \mathscr{O} . Soit $a \in \Gamma \cap \Omega$. D'après l'hypothèse (ii) du théorème et la définition de d il existe $\alpha \in \mathbb{N}^N$ vérifiant $|\alpha| \leq d$ tel que $D^\alpha m(\alpha) \neq 0$. Posons $r = |\alpha|$. Alors grâce à la proposition 2, on peut toujours supposer quitte à faire un changement de variables (translation + rotation) que le point considéré est l'origine et que $D_1^r m(0) \neq 0$. Il est donc possible de trouver $\ell > 0$ tel que $A = \{x \mid |x_i| < \ell \ (i = 1, ..., N)\}$ soit contenu dans Ω et que pour $x \in A$ on ait $|D_1^r m(x)| > \frac{1}{2} |D_1^r m(0)|$.

Soit $\mathscr{O} = \{x \mid |x_1| < \ell/2, |x_i| < \ell \ (i = 2, ..., N)\}$. Fixons $x_2, ..., x_N$. Alors la fonction f définie par $f(x_1) = m(x_1, ..., x_N)$ est une fonction qui vérifie: $|f^{(r)}(x_1)| > \frac{1}{2} |D_1^r m(0)|$ et la fonction Q définie par $Q(x_1) = P(x_1, ..., x_N)$ vérifie $Q \in H_n$. Donc d'après la proposition 1

$$||Q||_{1-\ell/2,\ell/2[} \leq (n+r)^r 2r! (4r)^r |\ell^r D_1^r m(0)|^{-1} ||fQ||_{[-\ell,+\ell]}$$

$$\leq C_1 n^r ||Pm||_{A}.$$

Mais le résultat étant indépendant de $x_2,...,x_N$ on en conclut que

$$||P||_{\mathscr{O}} \leqslant C_1 n^r ||Pm||_A \leqslant C_1 n^d ||Pm||_{\Omega}.$$

4. Construction du voisinage $\mathscr O$ pour un point de $\Gamma \cap \partial \Omega$

LEMME 6. Soit ω un ouvert de \mathbb{R}^N contenant l'origine et $f \in C^r(\omega)$. Soit $c \in \mathbb{R}$. Alors il existe des entiers strictement positifs $\gamma_0(=1)$, $\gamma_1,...,\gamma_{\lfloor r/2 \rfloor}$ tels que:

$$[(D_1 + cx_1D_N)^r f](0) = \left[\sum_{p=0}^{[r/2]} c^p \gamma_p D_1^{r-2p} D_N^p f\right](0).$$

Démonstration. En développant formellement le premier membre, nous obtenons une somme de termes de la forme

$$[D_1^{r_1}(cx_1D_N)^{p_1}D_1^{r_2}(cx_1D_N)^{p_2}\cdots D_1^{r_k}(cx_1D_N)^{p_k}f](0)$$
(3)

où les r_i et les p_i sont des entiers non nuls (sauf peut-être r_1 et p_k) qui vérifient $p_1 + \cdots + p_k = p$, $r_1 + \cdots + r_k = r - p$. Si $r_1 = 0$ le terme (3) est évidemment nul et si $r_1 \neq 0$ on remarque que pour une fonction $g \in C^{r_1}(\omega)$ d'après la formule de Leibniz

$$[D_{1}^{r_{1}}(x_{1}^{p_{1}}g)](0) = \sum_{i=0}^{r_{1}} {r_{1} \choose i} (D_{1}^{i}x_{1}^{p_{1}})(0) D_{1}^{r_{1}-i}g(0)$$

$$= {r_{1} \choose p_{1}} p_{1}! D_{1}^{r_{1}-p_{1}}g(0) \quad \text{si} \quad r_{1} \geqslant p_{1}, \qquad (4)$$

$$= 0 \quad \text{sinon,}$$

et donc par une récurrence facile le terme (3) vaut soit 0 soit $c^p\beta_{(p_1,\ldots,p_k)}[D_1^{r-2p}D_N^pf](0)$ où $\beta_{(p_1,\ldots,p_k)}$ est un entier strictement positif. Pour $p=0,1,\ldots,[r/2]$ on voit que $\beta_{(p)}$ qui provient par le calcul précédent du terme $[D_1^{r-p}(x_1D_N)^pf](0)$ vaut r!/p! donc γ_p est non nul. Par ailleurs il est clair que $\gamma_0=1$.

Nous allons nous placer en un point de $\Gamma \cap \partial \Omega$. Il est possible grâce à l'hypothèse (i) de supposer, quitte à faire un changement de variables, (translation + rotation) qu'il s'agit de l'origine et que dans un voisinage V_1 de l'origine les points de $\partial \Omega$ sont définis par $x_N = v(x')$ et ceux de Ω par $x_N > v(x')$ où $v \in C^2$ et vérifie v(0) = 0, grad v(0) = 0.

Le plan tangent à $\partial \Omega$ en 0 est défini par l'équation $x_N = 0$. D'après l'hypothèse (ii) et la définition de d il existe $\alpha \in \mathbb{N}^N$ tel que $|\alpha| + \alpha_N \leq d$ et $D^{\alpha}m(0) \neq 0$. On peut toujours à l'aide de la proposition 2 (c'est à dire en faisant une rotation dans \mathbb{R}^{N-1}) se ramener au cas où $\alpha = (\alpha_1, 0, 0, ..., 0, \alpha_N)$ donc au cas où m vérifie $D_1^{\alpha_1}D_N^{\alpha_2}m(0) \neq 0$ avec $\alpha_1 + 2\alpha_N \leq d$.

Nous allons maintenant faire un changement de variables dont le but est de rendre strictement concave le bord de Ω au voisinage de 0, de façon à pouvoir recouvrir l'intersection de Ω avec un voisinage de 0 par des segments ayant une longueur minimum fixée et une direction voisine de celle de l'axe $0x_1$. Sur chacun de ces segments nous pourrons appliquer les résultats de la première partie (en une variable).

Soit c > 0. Faisons le changement de variables τ défini par $X = \tau(x)$,

 $X'=x', X_N=x_N-c(x_1^2+x_2^2+\cdots+x_{N-1}^2)$. Le changement de variables réciproque τ^{-1} est défini par:

$$x' = X',$$
 $x_N = X_N + c(X_1^2 + X_2^2 + \dots + X_{N-1}^2).$

Nous remarquons que τ a la propriété suivante: si $P \in \mathscr{S}_n$ alors $P \circ \tau^{-1} \in \mathscr{S}_{2n}$.

Nous allons maintenant préciser le choix de c.

- (I) Nous choisissons c suffisamment grand pour que la différentielle seconde de la fonction $\varphi(x') = v(x') c(x_1^2 + \dots + x_{N-1}^2)$ soit une forme bilinéaire symétrique définie négative ce qui implique (voir [6, p. 100]) que dans \mathbb{R}^N la surface définie par l'équation $x_N = \varphi(x')$ est strictement concave au voisinage de l'origine. En d'autres termes comme on a $x_N v(x') = X_N \varphi(X')$, dans les nouvelles coordonnées le bord de $\tau(\Omega)$ est défini au voisinage de l'origine par $X_N = \varphi(X')$ et il est strictement concave. Remarquons que l'on a $\varphi(0) = 0$, grad $\varphi(0) = 0$ et que pour les points de $\tau(\Omega)$ au voisinage de l'origine $X_N > \varphi(X')$.
 - (II) On a $\partial/\partial X_1 = D_1 + 2cx_1D_N$ donc d'après le lemme 6:

$$\left[\left(\frac{\partial}{\partial X_1}\right)^{\alpha_1+2\alpha_N}(m\circ\tau^{-1})\right](0)=\left[\sum_{p=0}^{\left[\frac{1}{2}\alpha_1+\alpha_N\right]}(2c)^p\gamma_pD_1^{\alpha_1+2\alpha_N-2p}D_N^pm\right](0).$$

Dans la somme du second membre, il y a au moins un terme non nul (celui qui correspond à $p = a_N$) donc pour c suffisamment grand le second membre n'est pas nul. Nous ferons également un choix de c qui réalise cette condition.

Puisque $(\partial/\partial X_1)^{\alpha_1+2\alpha_N} (m \circ \tau^{-1})(0) \neq 0$ il existe un voisinage V de 0 et un nombre $\varepsilon > 0$ tel que pour tout λ vérifiant $|\lambda| < \varepsilon$ et pour tout X dans V on ait

$$\left| \left(\frac{\partial}{\partial X_1} + \lambda \frac{\partial}{\partial X_N} \right)^{\alpha_1 + 2\alpha_N} (m \circ \tau^{-1})(X) \right|$$

$$\geqslant \frac{1}{2} \left| \left(\frac{\partial}{\partial X_1} \right)^{\alpha_1 + 2\alpha_N} (m \circ \tau^{-1})(0) \right|. \tag{5}$$

Pour ℓ et h fixés, positifs, on note

$$E_{\ell h} = \{X \in \mathbb{R}^N \mid |X_i| = \ell \ (i = 1, ..., N - 1), \ \varphi(X') \leqslant X_N \leqslant h\}$$

(voir Fig. 1). Nous pouvons choisir ℓ et h de telle sorte que les propriétés suivantes soient vérifiées

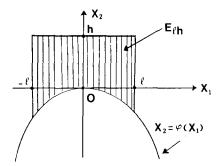


Fig. 1. L'ensemble $E_{\ell h}$ pour N=2.

- (i) $E_{\ell h} \subset V$,
- (ii) $E_{\prime h} \subset \overline{\Omega}$,
- (iii) pour tout point $a \in E_{\ell h}$ il existe un segment S_a contenu dans $E_{\ell h}$ passant par a et défini par

$$S_a = \{X \mid X_2 = a_2, ..., X_{N-1} = a_{N-1}, X_N = \gamma_a X_1 + \delta_a, |X_1| \le \ell\}$$

avec $|\gamma_a| < \varepsilon$ (en termes géométriques simples: on choisit ℓ suffisamment petit pour pouvoir recouvrir $E_{\ell h}$ par des segments "à peu près" horizontaux de direction voisine de celle de $0X_1$). Soit

$$\mathcal{O}_{\ell h} = \{X \mid |X_i| < \ell \ (i = 2, 3, ..., N - 1), |X_1| < \frac{1}{2}\ell, X_N < h\}$$

(voir Fig. 2). Pour a donné plaçons nous maintenant sur S_a et faisons le changement de variable $Y=\sigma(X)$ défini par $Y'=X',\ Y_N=X_N-\gamma_aX_1-\delta_a$. On aura $\partial/\partial Y_1=(\partial/\partial X_1)+\gamma_a(\partial/\partial X_N)$. $\sigma(S_a)$ est le segment défini par

$$Y_2 = a_2, ..., Y_{N-1} = a_{N-1}, Y_N = 0, |Y_1| < \ell.$$

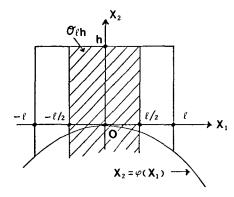


Fig. 2. L'ensemble $\mathcal{O}_{\ell h}$ pour N=2.

Nous avons pour $X \in S_a$

$$(m \circ \tau^{-1})(X_1,...,X_{N-1},X_N-\gamma_aX_1-\delta_a)=(m \circ \tau^{-1} \circ \sigma^{-1})(Y_1,...,Y_{N-1},0)$$

et donc d'après (5)

$$\left| \left[\left(\frac{\partial}{\partial Y_1} \right)^{\alpha_1 + 2\alpha_N} (m \circ \tau^{-1} \circ \sigma^{-1}) \right] (Y) \right| > \frac{1}{2} \left| \left[\left(\frac{\partial}{\partial X_1} \right)^{\alpha_1 + 2\alpha_N} (m \circ \tau^{-1}) \right] (0) \right|.$$

Donc d'après la proposition 1, nous avons, pour a donné:

$$\|P \circ \tau^{-1} \circ \sigma^{-1}\|_{\sigma(S_a) \cap \sigma(\mathcal{O}_{\ell h})}$$

$$\leq C_2 n^{\alpha_1 + 2\alpha_N} \|P \circ \tau^{-1} \circ \sigma^{-1} \cdot m \circ \tau^{-1} \circ \sigma^{-1}\|_{\sigma(S_a)}$$

et

$$\|P \circ \tau^{-1}\|_{S_{\alpha} \cap \mathscr{O}_{\ell,h}} \leq C_2 n^{\alpha_1 + 2\alpha_N} \|P \circ \tau^{-1} \cdot m \circ \tau^{-1}\|_{S_{\alpha}}.$$

Mais le résultat est indépendant du point a choisi dans $E_{\ell h}$. Il en résulte puisque $E_{\ell h}$ peut être recouvert par des segments S_a que $\|P \circ \tau^{-1}\|$ $\mathscr{O}_{\ell,h\cap\tau(\Omega)} \leqslant C_2 n^{\alpha_1+2\alpha_N} \|P \circ \tau^{-1} \cdot m \circ \tau^{-1}\|_{E_{\ell h}}$. On achève alors en prenant $\mathscr{O} = \tau^{-1}(\mathscr{O}_{\ell h})$ ce qui nous donne $\|P\|_{\mathscr{O}\cap\Omega} \leqslant C_2 n^{\alpha_1+2\alpha_N} \|Pm\|_{\tau^{-1}(E_{\ell h})} \leqslant C_2 n^d \|Pm\|_{\Omega}$.

5. Optimalité de la constante d

Pour démontrer l'optimalité de la constante d nous montrerons que l'on peut trouver une constante C_3 telle que pour tout n il existe $P \in \mathscr{S}_n$ tel que $n^d \|Pm\|_Q \leq C_3 \|P\|_Q$.

Nous utiliserons de façon essentielle les polynômes de Jacobi. Les notations $P_n^{(d,0)}$ concernant ces polynômes seront celles de [7, Chap. IV].

Rappelons les résultats suivants [7, pp. 168–169]: pour $d \ge 0$, $||P_n^{(d,0)}||_{[-1,1]} = |P_n^{(d,0)}(1)| = n^d$,

$$\begin{split} |P_n^{(d,0)}(\cos\theta)| &\leqslant C_4 n^{-1/2} \theta^{-d-1/2} & \text{si} \quad n^{-1} \leqslant \theta \leqslant \pi/2, \\ &\leqslant C_5 n^d & \text{si} \quad 0 \leqslant \theta \leqslant n^{-1}, \\ &\leqslant 1 & \text{si} \quad \pi/2 \leqslant \theta \leqslant \pi. \end{split}$$

On en déduit que pour $r \in [0, d/2]$, compte tenu du fait que $1 - \cos \theta < \theta^2/2$:

$$(1 - \cos \theta)^{r} |P_{n}^{(d,0)}(\cos \theta)| \leq C_{6} n^{-1/2} \theta^{2r - d - 1/2} \leq C_{6} n^{d - 2r} \quad \text{si} \quad n^{-1} \leq \theta \leq \pi/2$$

$$\leq C_{7} n^{d} n^{-2r} \quad \text{si} \quad 0 \leq \theta \leq n^{-1},$$

$$\leq 2^{r} \quad \text{si} \quad \pi/2 \leq \theta \leq \pi,$$

et par suite pour $x \in [-1, 1]$:

$$\|(1-x)^r P_n^{(d,0)}(x)\|_{[-1,1]} \le C_8 n^{d-2r} \le C_8 n^{-2r} \|P_n^{(d,0)}\|_{[-1,+1]}$$

ou encore:

$$||u^{r}P_{n}^{(d,0)}(1-u)||_{[0,2]} \leqslant n^{-2r} ||P_{n}^{(d,0)}(1-u)||_{[0,2]}.$$
(6)

Considèrons maintenant le polynôme pair $Q_{2n}(x) = P_n^{(d,0)}(1-2x^2)$. On a $\|Q_{2n}\| = |Q_{2n}(0)| = n^d$. Posons $x = \sin(\theta/2)$ $(0 \le \theta \le \pi)$ alors $x^r Q_{2n}(x) = (\sin(\theta/2))^r P_n^{(d,0)}(\cos \theta)$ donc par un raisonnement analogue au raisonnement précédent, pour r < d:

$$|(\sin(\theta/2))^r P_n^{(d,0)}(\cos\theta)| \leqslant C_9 n^{-1/2} \theta^{-d-(1/2)+r} \qquad \text{si} \quad n^{-1} \leqslant \theta \leqslant \pi/2,$$

$$\leqslant C_{10} n^d n^{-r} \qquad \text{si} \quad 0 \leqslant \theta \leqslant n^{-1},$$

$$\leqslant 1 \qquad \text{si} \quad \pi/2 \leqslant \theta \leqslant \pi,$$

et donc puisque Q_{2n} est pair

$$|||x|^r Q_{2n}||_{[-1,1]} \le C_{11} n^{d-r} \le C_{11} n^{-r} ||Q_{2n}||_{[-1,1]}.$$
 (7)

Il est clair qu'il suffit de se limiter ici au cas d > 0. Pour un point $a \in \overline{\Omega}$ où $d(a, m) = d(\Omega, m) = d$ deux cas sont à considérer:

Cas 1 $(a \in \Omega)$. Puisque d > 0, $a \in \Omega \cap \Gamma$. Nous pouvons supposer que a est l'origine et que Ω est contenu dans $[-1,1]^N$. Dans ce cas, d'après l'hypothèse la restriction de m à Ω se prolonge à un voisinage de $[-1,1]^N$ en une fonction de classe C^s que nous noterons encore m, et l'on pourra écrire pour tout x:

$$m(x) = \sum_{|\alpha|=d} (x^{\alpha}/\alpha!) \ m^{(\alpha)}(\lambda x)$$
 où $\lambda \in [0, 1]$.

Considérons le polynôme P défini par $P(x) = \prod_{i=1}^{N} Q_{2n}(x_i)$. Le degré de P est 2Nn et $||P||_{[-1,1]^N} = |P(0)| = n^{Nd}$ et d'après (7):

$$||Pm||_{\Omega} \leqslant \sum_{|\alpha|=d} (\alpha!)^{-1} ||x^{\alpha}P(x)||_{[-1,1]^{N}} ||m^{(\alpha)}||_{[-1,1]^{N}}$$

$$\leqslant C_{12} ||P||_{\Omega} n^{-d} \leqslant C_{13} (2Nn)^{-d} ||P||_{\Omega}.$$

Cas 2 $(a \in \partial \Omega)$. Nous noterons $B(x, \rho)$ la boule ouverte de centre x et de rayon ρ . Nous supposerons là encore que a est l'origine et que le plan tangent est défini en ce point par $x_N = 0$. Il existe un point $b = (0, ..., 0, b_N)$ tel que $B(b, |b_N|) \cap \Omega = \emptyset$ et l'on peut toujours se placer dans des conditions telles que $\Omega \subset B(0, 1)$. Posons $||x||^2 = \sum_{i=1}^N x_i^2$ et considérons le polynôme R défini par:

$$R(x) = \prod_{i=1}^{N-1} Q_{2n}(x_i) \cdot P_n^{(2d,0)}(1 - ||x||^2) \cdot P_n^{(2d,0)}(1 - ||x||^2 + 2b_N x_N).$$

On a degré de R=2(N+1)n et $\|R\|_{\Omega}=|R(0)|=n^{(N+3)d}$. La restriction de la fonction m à Ω peut être prolongée en une fonction de classe C^s dans un voisinage de B(0, 1). La fonction prolongée est encore notée m. Un développement de Taylor à l'ordre d nous donne: $m(x)=\sum_{|\alpha|\leqslant d}C_{\alpha}x^{\alpha}$ avec $C_{\alpha}=(\alpha!)^{-1}m^{(\alpha)}(0)$ pour $|\alpha|< d$ et $C_{\alpha}=(\alpha!)^{-1}m^{(\alpha)}(\lambda x), \lambda\in[0,1]$ pour $|\alpha|=d$. D'après (6) on a pour chaque α tel que $|\alpha|+\alpha_N\geqslant d$ (pour les autres $D^{\alpha}m(0)=0$),

$$||x^{\alpha}R||_{\Omega} = ||x^{\alpha'}x_{N}^{\alpha_{N}}R||_{B(0,1)}$$

$$\leq C_{14}n^{d(N-1)-|\alpha'|}||x_{N}^{\alpha_{N}}P_{n}^{(2d,0)}(1-||x||^{2})$$

$$\times P_{n}^{(2d,0)}(1-||x||^{2}+2b_{N}x_{N})||_{B(0,1)}$$

et en écrivant $x_N = (2b_N)^{-1} (2b_N x_N - ||x||^2 + ||x||^2)$ à l'aide de (7) on obtient:

$$||x^{\alpha}R||_{\Omega} \leq C_{15} n^{d(N+3)-|\alpha|-\alpha_N} \leq C_{16} [2(N+1)n]^{-|\alpha|-\alpha_N} ||R||_{\Omega}$$

ce qui achéve la démonstration.

Je remercie le référé pour ses remarques qui ont permis une simplification de cet article. En particulier la démonstration des lemmes 4 et 5 et de la proposition 2 lui sont dues.

BIBLIOGRAPHIE

- P. GOETGHELUCK, Majorations pour les polynômes dans certains espaces de Banach. Application à l'approximation, J. Approx. Theory 18 (1976), 316-328.
- P. GOETGHELUCK, Polynomial inequalities and Markov's inequality in weighted L^ρ-spaces, Acta Math. Acad. Sci. Hungar. 33 (1979).
- P. GOETGHELUCK, Inégalité de Bernstein dans les espaces L^p avec poids, J. Approx. Theory 28 (1980), 359-365.
- 4. L. M. MILNE-THOMSON, "Finite Differences," Chelsea, New York, 1981.
- 5. I. P. NATANSON, "Constructive Function Theory," Vol. I, Ungar, New York, 1964.
- A. W. ROBERTS AND D. E. VARBERG, "Convex Functions," Academic Press, New York/London, 1973.
- G. Szegö, "Orthogonal Polynomials," Amer. Math. Soc. Coll. Pub., Volume 23, New York, 1959.